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Abstract. The scientific method is predicated on the assumption that research designs and results can be 
reproduced and replicated.  However, recent findings in some disciplines suggest that many studies fail to 
reach this standard, moving issues surrounding reproducibility and replicability of forward in the research 
agenda of those fields.  While the topic has yet to become a point of controversy in geography, the 
intricacies of geographic phenomena and spatial data analysis make the field vulnerable to criticism.  This 
commentary discusses how uncertainties related to the conception, measurement, analysis, and 
communication of geographic analyses contribute to difficulties in the reproduction and replication of 
geographic research.  Investigating how these uncertainties collectively impact the reproducibility and 
replicability of spatial data analyses should be a critical focus of future Geographical Analysis research. A 
call to action for geographers to improve the reproducibility and replicability of their work and specific 
recommendations on how Geographical Analysis might facilitate this process conclude the commentary.  
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Introduction  
The reproducibility and replicability (R&R) of scientific results has been receiving widespread 
attention in many fields of study because the ability to independently verify results is the 
fundamental, self-correcting mechanism of the scientific method.  Whether or not research 
results can be independently reproduced or replicated is a question that has moved forward on 
the research agendas of many fields (Ioannidis 2005, Camerer et al. 2016, Baker 2017, Ioannidis 
et al. 2017).  Given the important role R&R plays in scientific progress, it is somewhat surprising 
that the topic has received limited attention and formal study in geography and geographical 
analysis.  While a series of recent studies and workshops has sparked a discussion of R&R in 
geography by assessing whether specific geographical analyses can be reproduced (SPARC 
Workshop 2019, Ostermann and Granell 2017, Nust et al. 2018, Konkol et al. 2019) and how the 
discipline might move toward broader adoption of R&R standards (Brunsdon and Singleton 
2015, Brunsdon 2016), far more work is needed.  Basic questions remain unanswered such as to 
what extent is R&R possible in geographical analysis given the roles spatial context and 
observation play in the discipline?  In which areas of geographic research are failures to 
reproduce or replicate most likely or most severe? And, how are expectations about R&R and 
failures to reproduce or replicate related to the fundamental uncertainties inherent in any spatial 
analysis?  Looking to the future of geography, spatial science, and geographical analysis, we 
argue that R&R must move forward on the discipline’s research agenda.  Improving our ability 
to explain geographic phenomena rests on our ability to understand, verify, apply, and extend the 
inferences of prior research.   

Conflicting definitions of ‘reproducible’ and ‘replicable’ have emerged in the literature as 
disciplinary interest in the subject has expanded (Barba 2018, Plesser 2018).  While debate about 
consistent terminology continues, the most widely adopted definitions follow a convention 
linked to Claerbout and Karrenbach (1992), further formalized by Donoho et al. (2009) and Peng 
(2011).  In 2015, The National Science Foundation embraced these definitions and formally 
defined the terminology as follows (Bollen et al. 2015): 

Reproducibility refers to the ability of a researcher to duplicate the results of a prior study 
using the same materials as were used by the original investigator. 
Replicability refers to the ability of a researcher to duplicate the results of a prior study if 
the same procedures are followed but new data are collected 

Stated more succinctly, research is reproducible when an independent researcher can use the 
same data and the same methods to produce the same results (same data + same methods = same 
results).  Research is replicable when new data are collected, but the same (or very similar) 
methods produce the same (or very similar) results (new data + same/similar methods = 
same/similar results).  The precise definition of same and similar remains ill-defined in many 
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fields.  Perhaps the best current discussion of this topic can be found in Goodman et al. (2016), 
Peng (2011), and Stodden (2015), which respectively link R&R to specific objectives (obtaining 
the same results or inferences), causes (identifying why results differ), and degrees (placing 
results along a spectrum of R&R).  Geography is an inherently interdisciplinary field that 
leverages several scientific paradigms to make statements about spatial generating processes. 
Therefore, it is reasonable for geographers to draw from each of these three interpretations.  
Here, we use the acronym R&R to refer generally to the issues at hand, and we use the terms 
‘reproducibility’ and ‘replication’ according to the NSF definitions above. Our primary interest 
though is in the implications of R&R for inference.  Ultimately, developing reproducible and 
replicable research practices in geography while understanding the limits of R&R will allow us 
to create inferences that are more robust to changes in data or context and lead to the 
development of internally consistent and generalizable theory – better explanation of geographic 
phenomena. 

With 50 years of involvement in the field, Geographical Analysis, is well-positioned to lead 
the study of reproducibility and replicability issues in geography as well as the development of 
standards and practices that improve our ability to explain geographic phenomena.  As an early 
contribution to this stream of research, this paper provides a commentary on how the 
uncertainties of geographical analysis relate to the reproducibility and replicability of results and 
inference.  The focus of our discussion is R&R, but we use uncertainty as a means of placing the 
causes of failures to reproduce or replicate research at specific points within the stages of the 
scientific method.  This approach allows us to present a framework for future R&R research that 
will allow researchers to place their contributions within the scientific research process.  While a 
comprehensive assessment of these issues is beyond the scope of any single work, we highlight 
critical features of geographical analysis likely to affect R&R, and discuss how geographers can 
contribute to this stream or research. 
 

Reproducibility, Replicability, and Uncertainties in Geographical Analysis 
Uncertainty is present in geographical analyses because it is not possible to completely represent 
the complexity of the real world.  In this regard, geographical analysis shares a challenge faced 
by any empirical science.  Uncertainty about how best to conceptualize, measure, analyze, or 
communicate research expands the number of choices and decisions researchers must make 
during the course of an investigation.  When we seek to replicate scientific findings, the presence 
of uncertainties in prior studies can lead different researchers to make alternative choices and 
decisions, even when examining the same process in the same spatial context.  Within high-
dimensional datasets, the sheer number of variables and the presence of natural variation also 
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expands the number of reasonable approaches to analyzing the same or different data (Munafo et 
al. 2017).   

Facing uncertainty and natural variation in collected data, geographers often “try and select” 
(sensu Gelman and Loken 2013; de Groot 1956) different decisions en route to a final analysis, 
result, and inference.  During that process, it can be difficult for researchers to recognize, and 
later communicate, all the choices they made, and it remains common practice to only report the 
single result and narrow set of choices that generated a specific outcome.  Termed ‘researcher 
degrees of freedom’ (Simmons et al. 2011), this collective set of often unreported choices, and 
associated unreported alternative analyses, limits our ability to consider results and inferences in 
the context of their complete design and development.  While the results of such a study may be 
reproducible, the inferences we draw from the reproduction may differ depending on how a 
researcher views the conceptualizations, measurements, and analyses conducted.  Replication of 
results or inferences also becomes challenging because a failure to communicate how 
phenomena are conceptualized and measured limits our ability to collect comparable datasets and 
repeat analyses. 

Further consideration of the relationship between uncertainty and R&R is warranted in 
geographical analysis due to the central role spatial context and spatial relationships play in the 
emergence of geographic phenomena.  Because many geographical analyses rely on 
observational data drawn from uncontrolled settings, replicating geographic research requires a 
careful consideration of how uncertainties in the original research design were addressed and to 
what extent the underlying spatial generating processes should be expected to operate in the 
same way given a change in context that often accompanies a change in data.  Dating back to at 
least the Hartshorne-Schaefer debate, the geographic literature has long examined whether, and 
in which instances, we might expect geographic processes to remain stable, thereby allowing the 
study of those processes to be replicable (Hartshorne 1939, Schaefer 1953, Hartshorne 1955).  At 
the same time, the observation that geographic data tend to exhibit spatial dependencies brings 
into question how and to what extent replications should account for spatial relationships in ways 
that are consistent with prior work, while also, as far as possible, matching relationships that 
exist in reality. For example, it is possible to image two datasets collected independently from 
the same location at two different times, and for the spatial structure of a key relationship among 
the variables to have changed over time between the data collection periods. If the analysis of the 
first dataset correctly specifies the spatial dependence in the first period, should that specification 
then be used to set up a replication study that uses the dataset from the second time period? If the 
same spatial weighting method is used, the replication may fail due to a misspecification of the 
spatial dependence in the second period. However, it may also be the case that if the spatial 
weights in the second period are adjusted to match the true spatial relationship of that period, 
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estimates might align and produce a successful replication. Determining and communicating how 
large a difference in the structure of spatial dependence can be between studies will be central to 
identifying whether a geographical study produces a replication of a prior result. Moreover, what 
is identified as different enough to qualify as non-replication will likely note be the same for 
different spatial processes and geographic contexts.    

Defining the geographic contexts in which a spatial generating process produces a consistent 
effect or spatial pattern remains a central goal of geographic research.  Making that 
determination depends on our ability to trust replications and reproductions of prior geographical 
analyses, which in turn requires a clear understanding of how uncertainties in the design and 
analysis shape geographic research.  We therefore use uncertainty to relate characteristics of 
geographical analysis to R&R and place those challenges within the context of the scientific 
method.  The study of uncertainty is well-established in geography (Goodchild 2018, Griffith 
2018).  We build on this tradition by integrating the summative assessment of Longley et al. 
(2015) with the elaboration of threats to scientific R&R presented by Munafo et al. (2017) (Fig. 
1).  Specifically, we examine how uncertainties in (1) conceptualization, (2) measurement, (3) 
analysis, and (4) communication complicate geographical analysis in ways that affect our ability 
to reproduce and replicate prior findings.  The interior black circle in Figure 1 represents the 
scientific research cycle from generating a hypothesis through communication of results. Around 
the outside are the four types of uncertainty positioned along the portions of the scientific 
method they most impact. The gradual increase in thickness of the spiral represents how 
uncertainty and natural variation expand the number of choices a researcher is required to make, 
and the widening set of reasonable analyses he or she might undertake.  In the following sub-
sections, we use each of the four uncertainty filters as entry points to discuss the characteristics 
of geographical analysis that complicate the reproduction and replication of geographic research.   
 
<< Insert Figure 1 Here >> 
 
Conceptual uncertainty 
Producing the same results and inferences during the reproduction or replication of a prior study 
will depend in part on whether researchers share a conceptualization of the underlying 
phenomena.  However, matching the conception of geographic phenomena across studies can be 
difficult because geographic phenomena often have no natural unit of analysis, which makes 
their definition subject to the vagueness and ambiguity introduced by individual perceptions.  
These conceptual uncertainties are central to R&R because they ultimately influence how we 
measure, analyze, and interpret geographic phenomena.  
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Conceptual uncertainty typically arises early in the scientific process during hypothesis 
generation and study design (Fig. 1) when researchers are making decisions about what aspects 
of reality will be represented, which data models will be used to represent phenomena, the spatial 
extent of the study area, and choices surrounding scale (e.g., resolution).  Conceptual uncertainty 
does not necessarily impact reproducibility, but it is likely to affect replication if the 
operationalization and communication of these decisions is not clear as that can lead to different 
understandings of what is being studied. If the formalization and operationalization of the 
concept under examination is not communicated properly by the original researcher, another 
researcher attempting to replicate the study may collect data that represents an entirely different 
aspect of a geographic phenomenon.  This misalignment between concept and data shifts the 
purpose of the replication study from the confirmation and expansion of prior work to the 
exploration of new aspects of a geographic process. 

Our ability to conduct replication studies of geographic phenomena can be improved by  
further developing ontologies that formalize geographic concepts and reduce conceptual 
uncertainty (Smith and Mark 2001).  A classic example in geographical ontology is whether or 
not mountains exist (Smith and Mark 2003).  Many would answer yes, but determining where a 
mountain ends and the valley begins is a non-trivial task.  If poorly communicated, different 
conceptualizations could lead to different data, results, and inferences during a replication.  
Geographical analysis had a brief and productive history of ontological investigation around the 
turn of the 21st century, particularly with respect to GIS. However, activity in this domain has 
slowed, and ontological training is rarely part of GIScience curriculum and research. A recent 
search of the articles in Geographical Analysis revealed only 15 that mentioned ontology(ies). 
Encouraging ontological investigations and formalization of geographic concepts, objects, 
features, and relations is one way Geographical Analysis can positively improve our capacity to 
replicate geographic research.   

The development of geographic ontologies is inextricably tied to scale.  When a researcher 
collects original data, operationalization of a formal ontology rests on the practical delineation of 
individual units of analysis and study area extent.  As a practical matter, geographers often use 
data sets produced or generated by others.  When this occurs, a researcher may inherit a 
conceptualization from the data, which has been delivered at a predetermined scale.  Building on 
the example above, even with a formal ontology of a mountain, a classification algorithm trained 
to delineate mountains from 100 m input data would produce different results compared to an 
algorithm trained from 5 m data.   

At the same time, it is difficult to incorporate scale into geographic ontologies because many 
geographic phenomena have no single, characteristic scale. Complex systems, such as those 
studied by geographers, are often driven by many interactions within and across scales that 
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cannot be separated from one another (e.g., land cover; Vadjunec et al. 2018). Moreover, the 
processes responsible for generating the spatial patterns we seek to explain, and how those 
processes interact across scales, are likely to vary in time and space. For example, in a recent 
study investigating optimal scales for sampling atmospheric variables with unmanned aircraft 
systems, researchers found that the characteristic scales of temperature and humidity changed 
throughout the day and under different weather conditions (Hemingway et al. 2017). This 
combination of complexity and natural variation complicates R&R.  Uncertainty about how to 
conceptualize the scale at which processes operate in replication studies conducted in different 
spatial locations is a fundamental challenge to R&R in geographic research.  Even when location 
is held constant between studies, changes at scales not measured in an original study, and 
therefore omitted in a replication, can create failures to replicate that are not the result of the 
variables included in either study.   

Still, decisions must be made regarding the scale at which to undertake geographical 
analyses, which leads to uncertainties in conceptualization (as well as measurement, discussed 
below). The most recognizable of these is the modifiable areal unit problem (MAUP; Openshaw 
1984; Fotheringham and Wong 1991), which has plagued geographical analysis for decades. The 
early recommendation by Openshaw (1984) to collect data at the finest resolution possible is 
perhaps becoming more of a reality given improvements in technology for data capture.  But, at 
the same time, individual data can lead to additional issues such as confidentiality. For example, 
in a recent project monitoring health impacts of transportation interventions in four cities, 
researchers grappled with tradeoffs between using nationally available data to ensure 
replicability across cities versus using detailed data to take advantage of the specific datasets 
collected by cities but at the expense of comparability between cities (Winters et al. 2018). 

   
Measurement uncertainty 
How we conceive geographic phenomena directly shapes how we measure those phenomena.  
However, when we measure reality there is also some uncertainty about how accurately and 
precisely our measurements match that reality.  This measurement uncertainty can accompany 
both the locations and attributes of entities, and it typically arises midway through the scientific 
process during study design and data collection (Fig. 1).  As with conceptual uncertainty, 
measurement uncertainty does not necessarily impact reproducibility, but it will affect replication 
if imperfect or unknown measurement conditions are not communicated. Errors in measurement 
and the uncertainties that surround them can be particularly problematic when they are spatially 
structured.   

In geographical analysis, measurement uncertainties are often difficult to assess because 
geographers use representations of the real world that are almost always incomplete (Longley et 



8 
 

al. 2015). Direct measurements of reality are often converted into representations using spatial 
data models that impose ‘filters’ on reality (Longley et al. 2015) and remove certain details.  
When this is the case, collecting and representing new data for replication studies following 
methods that match prior work can become difficult.  Even basic decisions such as whether to 
represent a phenomena using a raster or vector data model introduce different tradeoffs between 
accuracy and precision. For example, Yoo and Trgovac (2011) found that changing the support 
of an analysis from point to interpolated raster for tree predictions led to discrepancies in the 
results.  Spatial data uncertainty is also impacted by completeness and consistency (Haining 
2009). One issue changing the interaction between measurement uncertainty and R&R is the 
emergence of new approaches for collecting spatial data. For instance, LiDAR technology allows 
the capture of 3D datasets with unprecedented accuracy and precision (e.g., Matasci et al. 2018). 
However, collection is not systematic across study areas or time periods, leading to issues of 
completeness and consistency that limit the potential for replication (Mathews et al. 2019).  

The introduction of new forms of spatial data into geographic analysis has made it 
increasingly difficult to assess and communicate measurement uncertainties.  For example, the 
rising prominence of citizen scientists and crowdsourcing within the geographic research process 
(Ferster et al. 2018) has introduced uncertainties related to participant reliability, 
instrumentation, calibration, and sampling that are difficult to quantify. Specifically, the 
normally opportunistic data collection methods of citizen science and related volunteered 
geographic information raise questions about the use of conventional forms of statistical 
inference due to the lack of representative sampling across space or time.  Without a clear picture 
of what population is being studied, it is difficult to select appropriate distributions for 
comparison or develop informed priors.  Without conventional statistical measures of data 
uncertainty or platforms for inference, it is difficult to make inferences about underlying 
processes, and by extension to reproduce or replicate those inferences.  As one example, the 
BikeMaps.org project gathers volunteer-generated data for bicycle crashes, falls, and near misses 
that involve motor vehicles, scooters, pedestrians, infrastructure, or other cyclists (Nelson et al. 
2015). Researchers have found that the official data typically capture about 30 percent of bicycle 
incidents in urban areas but are biased toward crashes that involve motor vehicles (Teschke et al. 
2014). Without a complete map of bicycling safety data, it is difficult to quantify uncertainty or 
determine how VGI-based data collection may impact replicability. 

As spatial data continue to expand in geographic coverage, collection frequency, and level of 
detail, it will be important for Geographical Analysis to lead the way in the development of 
standards and protocols for reporting the provenance of spatial data. Data provenance refers to 
the complete record of who did what to a piece of data, and how and why that adjustment was 
made.  Standards and protocols of spatial data provenance are important because R&R require 
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more than accessibility to an original spatial dataset; they require documentation of the 
modifications and transformations the data have undergone.  To consider how researcher 
decisions about the construction of spatial data might be reasonably altered to fit a change in 
spatial context, or how such a change might affect replication, details and original reasoning 
about those choices should be made known. Tullis et al. (2015) and Linck (2015) suggest 
progress can be made in this area by developing methods to separate and quantify what they term 
‘content trust’ related to the uncertainty in the data and data sources themselves, and ‘workflow 
trust’ related to the reliability of tools and algorithms used in data analysis.  Tracking and 
communicating spatial data provenance becomes increasingly difficult in the collaborative, 
multi-user environments that increasingly typify geographic research because changes to data 
created by different users are often and easily lost during complex workflows.   

Geographical Analysis can support the development of R&R by encouraging research that 
advances the development of provenance tracking frameworks (e.g., Singleton et al. 2016).  
Forum and standards for sharing data, code, and provenance information would similarly 
improve the R&R of geographic research.  As a discipline, geography is well-positioned to test 
the effectiveness and limits of provenance frameworks for tracking and assessing measurement 
uncertainties because geographers have access to data sets measured consistently over long 
periods of time that also span a wide range of spaces.  For example, the Landsat missions contain 
repeat data covering most of the globe since 1972 (Roy et al. 2014). Free, public access to 
Landsat data has led to broad usage, and while the 30m resolution is not ideal for measuring all 
phenomena, there are clear advantages to having a standard that can be used as a comparison for 
other measurements.  Counter to the openness and availability of geographic data is the need to 
preserve privacy and limit data release to spatially aggregations (e.g., health records and 
movement tracking data).  Thus, R&R is limited in certain contexts by the ability to record and 
share information about data provenance and measurement uncertainty.   
 
Analytical Uncertainties 
Uncertainty in the analysis of geographic data arises as researchers make choices about how to 
best examine spatial data given the natural variations, spatial patterns, and conceptual and 
measurement uncertainties that exist in the data.  A goal of geographical analysis is to separate 
the noise present in spatial data from signals of the effects of spatial processes.  The replication 
of spatial analysis is complicated by the number of choices that must be made during spatial 
analysis and the wide range of alternatives that could be reasonably pursued.  As with conceptual 
and measurement uncertainties, tracking and communicating analytical uncertainties and the 
choices made to resolve them is fundamental to R&R in geography.   
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While it may be reasonable to expect a geographical analysis to be reproducible, it is not 
clear that all geographical analyses should be replicable.  One of the fundamental features of 
geographical analysis is that it is not unusual to achieve different results about the determinants 
of a response variable based on data from different locations. This situation has two variants. 
First, different combinations of explanatory variables may appear to significantly affect the 
response in different locations. Second, the same model (i.e., combination of variables with same 
functional form) may be calibrated in different locations, but inferences regarding the variables 
affecting the response can vary.  Local models are one form of geographical analysis that seek to 
assess variations in underlying spatial generating processes over space. Examples of such models 
include geographically weighted regression (Fotheringham et al. 1998, Fotheringham et al. 2002, 
Fotheringham et al. 2017, LeSage 2004), eigenvector spatial filter-based local regression 
(Griffith 2008, Oshan and Fotheringham 2017), and certain kinds of Bayesian spatially-varying 
coefficient models (Gelfand et al. 2003, Banerjee et al. 2014, Wolf et al. 2017).  Using local 
models to analyze where models change in form or parameterization is akin to examining the 
locations in which a replication study may be expected to produce similar results and inferences. 

If the goal is to produce regional expectations about the replicability of results, it is also 
necessary to consider the analytical uncertainties created when multiple tests are conducted in 
the presence of spatial data dependence.  When multiple tests are used to examine the same 
hypothesis across a number of locations, it quickly becomes a near-certainty that results will 
include several false positives.  Correction factors have been proposed (Bonferonni 1936, Sidak 
1967, Benjamini and Hochberg 1995), but those corrections assume independence between tests 
that does not exist in most geographic contexts because neighboring test locations share spatially 
dependent data (Benjamini and Yekutieli 2001, Rogerson and Kedron 2012).  In order to assess 
whether a replication that uses multiple testing produces similar results and inferences, it is 
necessary to first assess the effect of spatial dependence in the original study and the degree to 
which the data (and testing) used in the replication has similarly-structured spatial dependencies 
(de Silva and Fortheringham 2016, Rogerson and Kedron 2016).  If the characteristics of the 
original data and methods are not communicated, replications may simply re-create and reinforce 
improper and incorrect inferences.  Even when adjustments are made, analytical uncertainties 
remain because it is difficult to measure how well spatial dependencies were captured and 
incorporated into the corrections.  This lack of knowledge further complicates assessment of the 
original inference and assessment of the R&R result. 

Geographical Analysis can contribute to the advancement of R&R by supporting the 
development and use of practices that communicate researcher choice.  However, improving 
communication through data/code sharing data and providing complete outputs, not just those 
presented in a final analysis, will not alone ensure the replicability of geographic research.  
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Because geographical analyses are directly tied to spatial data that are usually spatially 
autocorrelated it is often not possible to decompose datasets to isolate and examine selected 
characteristics.  Small changes in location or geographic context can lead to important shifts in 
the spatial structure of data.  When this occurs, we would not necessarily expect replication 
across space, but we can make progress on at least two fronts.  First, we can use local forms of 
geographical analysis to search for consistencies in results across regions.  Second, we can 
examine how ‘context’ is defined as well as what ‘same’ or ‘similar’ results mean in geography.  
Standardizing how these central ideas are defined as they relate to R&R in geography is key.   
 
Of course, the issue of what is ‘context’ remains largely unanswered in geographical analysis 
(Robertson et al. 2018; Kwon 2012). 

 
Communication Uncertainties 

The communication of geographic research remains largely unidirectional and incomplete, which 
is perhaps the biggest challenge for R&R in geography.  Geographic research is often presented 
as a linear process of conception, measurement, analysis, and results, which is then published as 
a peer-reviewed article, conference proceedings, research reports, or other form. However, such 
a clean pathway almost never occurs in reality, and the reality of what did occur is rarely fully 
reported in the paper.  This practice creates problems not only for R&R but for research more 
broadly.  Current publication culture dissuades inclusion of negative results due to either space 
and time constraints or a general lack of incentive (Rosenthal 1979, Franco et al. 2014). 
Therefore, negative results, which are equally important for advancing the state of geographic 
knowledge, are instead placed in the ‘file drawer’ where they are not disseminated to the larger 
scientific community.  Similarly, while journals have begun to encourage authors to publish 
datasets and procedures accompanying their analysis, there are few incentives for researchers to 
adopt this practice (Munafo et al. 2017).  Given that the development and preparation of a dataset 
can be time consuming, there is a strong disincentive for authors to provide open access before 
maximizing their own publications. These and other communication uncertainties exacerbate 
R&R by preventing and discouraging subsequent studies. 

To facilitate the establishment of R&R in geography, Geographical Analysis can encourage 
researchers to provide access to their data/code and give clear descriptions of how the data were 
compiled and constructed.  Singleton et al. (2016) go a step further in arguing that transparent 
workflows utilizing open source software and openly available data are necessary for ensuring 
reproducibility and scientific validity. While sharing data and code will help clarify how 
researchers manage measurement and analytical uncertainties, researchers should also explain 
choices made when conceptualizing and measuring the geographic phenomena under study. 
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Specific measures designed to address these conditions (e.g., registered reports, open science 
frameworks, calls for replication studies) are already being implemented in other scientific fields.  
A discussion of such tools applied to geographic research can be found in Nust et al. (2018). 
Incorporating those measures into the operation of the journal Geographical Analysis and, by 
extension, spatial analytical research is one avenue toward encouraging an R&R culture in our 
discipline.  
 

  

Establishing R&R in Geographical Analysis 
R&R has become a critical issue in many scientific fields, but geography and geographical 
analysis do not have a long history of addressing R&R. Some might argue that because 
geography is mostly a descriptive or methodological discipline and because geographers are not 
formally testing scientific hypotheses or making social policy recommendations, that R&R isn’t 
particularly relevant for the discipline. We disagree.  Improving explanation in geography is a 
primary goal of geographical analysis, and the underlying process of explanation is based on the 
scientific method, which is founded on the reproduction and reproducibility of results across 
different contexts.  Regardless of whether a geographical analysis draws primarily from 
computational, theoretical, or experimental approaches, geographers should be working toward 
the reproduction and replication of inference across spatial contexts, because inferences that are 
robust to changes in data or spatial context will lead to the development of internally consistent 
and generalizable theory. 

The complexity of spatial data makes our field vulnerable to criticism. Research examining 
the current degree to which existing work can be reproduced, and the space over which central 
findings are replicable, would position Geographical Analysis to respond to potential criticism 
and raise trust in the outcomes of geographic research.  At the same time, further examination of 
the practice of geographical analysis itself as it relates to uncertainties, the characteristics of 
spatial data, and the sharing of results will help resolve how replicable we can expect geographic 
research to be across space.  In this way, research into R&R can reinvigorate a foundational 
debate within geography between the nomothetic and idiographic approaches of the discipline.  
As a practical step forward, expanding research into geographic ontologies, frameworks for 
spatial data provenance, and the efficient sharing of all analytical choices and results can 
improve our present ability to reproduce and replicate geographical analyses and to study R&R.  
Sharing data and code are necessary, but alone these steps are not sufficient to ensure R&R in 
geographical analysis. The structured, but not entirely predictable, spatial variation of geographic 
phenomena means that replicability in geographical analysis may not be an obtainable objective. 
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Nonetheless, we argue that developing a culture of R&R in geography is the best way to 
facilitate the rigorous examination of why regularities in spatial patterns and processes 
breakdown and how spatial context shapes those changes. 
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Figure 1. Four geographic uncertainty filters coupled with the scientific method. The boxes 
provide examples of uncertainty sources that complicate the replication and reproduction of 
geographic research. Adapted from Munafo et al. (2017). 
 


